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PREFACE 

 
The original version of this text was presented as part of a course taught at session of the 
U. S. Particle Accelerator School held at Florida State University in January 1993.  
Subsequently, the material was further refined and presented as a course at Fermilab in 
the spring of 1993 and autumn of 1994.  Later, the course was presented at the USPAS 
sessions held under the auspices of Duke University (January 1995), the University of 
California, Berkeley (January 1997), Vanderbilt University (January 1999), Rice 
University (January 2001), and Indiana University (January 2003).  Comments received 
from the many students have been very helpful in the continued development of this 
course, and hopefully in its improvement.  This sixth revision represents a compilation of 
the work of numerous people and it is hoped that the reference citations lead the reader to 
the original work of those individuals who have developed this field of applied physics.  
Over the years, I have been greatly enriched by being personally acquainted with many of 
these fine scientists.  The problems supplied with each chapter were developed with the 
goal of promoting better understanding of the text. 
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